ТРУДЫ

TIAH

Том

SSN 0868-7129

КВАНТОВЫЕ КОМПЬЮТЕРЫ, МИКРО-И НАНОЭЛЕКТРОНИКА

физика, технология, диагностика и моделирование

2019 ТРУДЫ ФИЗИКО-ТЕХНОЛОГИЧЕСКОГО ИНСТИТУТА им. К.А. ВАЛИЕВА Том 28

УДК 537.534

В.И. БАЧУРИН, С.В. ВАСИЛЬЕВ, Н.С. МЕЛЕСОВ, Е.О. ПАРШИН, Д.Э. ПУХОВ, А.С. РУДЫЙ, С.Г. СИМАКИН, А.Б. ЧУРИЛОВ

КОМПЛЕКСНЫЙ АНАЛИЗ МНОГОСЛОЙНЫХ ТОНКОПЛЕНОЧНЫХ СТРУКТУР МЕТОДАМИ ЭЛЕКТРОННОЙ СКАНИРУЮЩЕЙ МИКРОСКОПИИ И ИОННОЙ СПЕКТРОМЕТРИИ

В работе приведены результаты комплексного анализа многослойных тонкопленочных структур методами вторичной ионной масс-спектрометрии, резерфордовского обратного рассеяния, просвечивающей и сканирующей электронной микроскопии. В качестве образцов использовались двенадцатислойные магниторезистивные структуры, содержащие большое количество близких по массе тяжелых и легких элементов с толщиной слоев нанометрового масштаба и четырехслойные структуры со слоями субмикронного масштаба. Показано, что использование взаимодополняющих методов анализа – ПРЭМ, СЭМ, ВИМС и РОР – позволяет получить количественную информацию о химическом составе, плотности и толщине слоев субмикронного масштаба. Метод РОР может использоваться в качестве входного контроля многослойных тонкопленочных структур нанометрового масштаба.

Введение

Многослойные тонкопленочные структуры находят широкое применение в микро- и нанотехнологиях. Свойства таких пленок зависят от химического состава слоев, их толщин, интерфейсов. Для оптимизации этих свойств необходимы аналитические методы, позволяющие проводить послойный анализ таких структур: получать информацию о распределении элементов по глубине, толщине и плотности слоев пленки. На сегодняшний день используются как разрушающие поверхность анализируемого образца, так и неразрушающие методы анализа. К первым относятся вторично-ионная масс-спектрометрия (ВИМС), рентгеновская фотоэлектронная спектроскопия (РФЭС),

[©] В.И. Бачурин, С.В. Васильев, Н.С. Мелесов, Е.О. Паршин, Д.Э. Пухов, А.С. Рудый, С.Г. Симакин, А.Б. Чурилов, 2019

растровая электронная оже-спектроскопия (РЭОС) и др. В этих методах для удаления слоев поверхности используется ионное распыление. Неразрушающим способом анализа является резерфордовское обратное рассеяние (РОР). Сравнительный анализ возможностей методик довольно подробно рассмотрен в работах [1–5].

К преимуществам разрушающих методов относится достаточно хорошее разрешение по глубине, которое при подборе условий ионной бомбардировки (низкие энергии ионов, наклонные углы падения) может составлять единицы нанометров [6]. Однако ионное перемешивание и развитие топографического рельефа при распылении приводят к ухудшению послойного разрешения при увеличении числа слоев. Кроме того, ионно-стимулированные диффузия и сегрегация могут изменить информацию о химическом составе пленки. При использовании методов РЭОС и РФЭС необходимо учитывать преимущественное распыление поверхности в случае многокомпонентных по составу слоев. Эти негативные явления, возникающие при ионном распылении, являются существенными недостатками при анализе многослойных пленок нанометрового масштаба, когда проективный пробег ионов сравним или больше толщины слоя [7] и в случае анализа пленок субмикронного масштаба из-за развития топографического рельефа.

Значительные трудности возникают при переводе измеряемой в эксперименте системы координат: ток элементов – время распыления в систему концентрация элементов – глубина пленки. Вышеперечисленные методы (кроме POP) анализа являются количественными при наличии стандартных образцов с известным содержанием элементов. Приготовление стандартов в случае трех и более компонент затруднено. Перевод времени распыления в глубину пленки обычно осуществляется измерением глубин кратеров распыления с помощью профилометров (в случае толщин пленок, превышающих десятки нанометров). При меньших толщинах используются методы сканирующей зондовой микроскопии: атомно-силовая микроскопия (ACM), сканирующая туннельная микроскопия (CTM). При этом требуется знание скоростей распыления слоев, которые могут значительно отличаться друг от друга. В ряде случаев используются методы сканирующей и просвечивающей электронной микроскопии, если реализуются условия для формирования хорошего контраста.

Метод POP позволяет получать количественную информацию о химическом составе слоев пленки и их толщинах. Послойное разрешение в стандартных экспериментальных установках может достигать 5 нм. Однако теоретическая база метода и имеющиеся возможности моделирования экспериментальных спектров позволяют получать надежную информацию при послойном анализе ниже пределов послойного разрешения. В работах [8–10] представлены результаты по определению толщин слоев сандвичей не более 5 нм, которые выявили их хорошее совпадение с данными технологических процессов осаждения пленок. Тем не менее метод POP имеет серьезные проблемы, связанные с разрешением близких по массам химических элементов, при определении концентрации элементов с массами, меньшими массы атомов подложки. Наложение сигналов также усложняется тем, что положение сигнала от элемента на данной глубине зависит не только от содержания этого элемента, но и от того, что лежит ближе него к поверхности.

Для получения достоверной информации о составе слоев, о толщинах слоев и интерфейсов по возможности используют как разрушающие, так и неразрушающие методы анализа [11–15], дополненные сканирующей и просвечивающей электронной микроскопией.

В данной работе представлены результаты комплексного анализа многослойных тонкопленочных структур нанометрового и субмикронного масштаба. Эксперименты проводились с использованием установок резерфордовского обратного рассеяния, вторично-ионной масс-спектрометрии, сканирующей и просвечивающей электронной микроскопии и позволили получить количественную информацию о толщинах и плотностях слоев.

1. Экспериментальные результаты

1.1. Анализ многослойных пленок нанометрового масштаба

Для отработки методики анализа многослойной тонкопленочной структуры был взят экспериментальный образец магниторезистивной структуры следующего состава: 5(нм)Ta/30CuN/5Ta/3NiFe/16IrMn/2.0CoFe/0.9Ru/2.5CoFeB/ 2MgO/2.5CoFeB/10Ta/7Ru на SiO₂/Si. Пленки получены методом магнетронного напыления на установке Singlus Timaris компании «Крокус Наноэлектроника». Числа перед составом слоя обозначают его толщину по данным технологического процесса. Подобного типа структуры используются в настоящее время для создания магнитно-туннельных переходов с высокими функциональными характеристиками. Встраивание данной структуры в последующие схемы требует проведение более 20 технологических операций. Поэтому желательно проведение входного контроля представленной структуры на предмет определения состава и толщины слоев.

Была проведена оценка качества интерфейсов и толщин слоев на основании анализа среза исследуемой структуры методом просвечивающей растровой

электронной микроскопии (ПРЭМ). Анализ среза, который был получен с помощью ионной резки на установке VERSA, выполнялся на микроскопе Tecnai G2 F20 U-Twin. На рис. 1 представлено изображение поперечного среза структуры. Из данных рис. 1 видно, что по контрасту можно выделить лишь некоторые слои: 2 -CuN; 8 - MgO; 7 и 9 - Co_{0.6}Fe_{0.2}B_{0.2}. Оценки для данных самого толстого слоя дают толщину 26.84 нм, а для слоя 8 - 1.74 нм, что достаточно близко соответствует данным технологического процесса осаждения пленки.

Химический состав структуры ранее анализировался методом ВИМС на установке TOF.SIMS⁵ [7]. В качестве анализирующего пучка использовались ионы Bi_3^+ с энергией 25 кэВ,

Рис. 1. Изображение поперечного среза структуры. Цифры условно обозначают слои пленки; нумерация – от подложки

а распыляющего пучок — ионы Cs^+ с энергией 1.0 кэВ. Регистрировались молекулярные ионы MCs^+ , т.е. была реализована идея катионного BИМС, о которой подробнее будет сообщено ниже. Были обнаружены все элементы, входящие в состав структуры, но их положение и толщина слоев, определенная по полученным профилям послойного анализа, не совсем соответствовала технологическим данным. Особенно это относится к слоям, содержащим Та, Ir, Fe, Ni. Причинами таких расхождений могут быть каскадное перемешивание элементов (толщины слоев близки к проективному пробегу распыляющих ионов), погрешности, возникающие при пересчете шкалы времени распыления в шкалу глубин, и формирование рельефа из-за различия скоростей распыления слоев и элементов в многокомпонентных слоях.

Представлялось интересным изучить возможности метода POP для анализа такого класса образцов, содержащих близкие по массам элементы (Mn, Fe, Ni, Co) и легкие элементы (N, O, B, Mg) в слоях нанометровой толщины.

Анализ методом POP описанного выше образца проводился на установке K2MV (HVEE). Использовались ионы He⁺ и He⁺⁺ с энергией от 1.2 MэB до 3.1 MэB (погрешность определения энергии ± 3 кэB). Ионы He⁺⁺ использовались для получения энергий свыше 2 MэB. Ток пучка ионов He⁺⁺ составлял 2 нА, ионов He⁺ – 10 нА; доза 10 и 30 мкКл соответственно. Геометрия экспериментов следующая: угол падения пучка He⁺ с энергией 1237 кэB составлял $\alpha = 30^{\circ}$, 1856 кэB – $\alpha = 8^{\circ}$ и пучка ионов He⁺⁺ с энергией 3052 кэB – $\alpha = 8^{\circ}$. Рассеянные ионы регистрировались под углом $\theta = 165^{\circ}$ к падающему пучку во всех экспериментах. Спектры снимались в одной точке образца. Из-за различных параметров на этих спектрах происходит наложение сигналов от элементов в отличающихся комбинациях, что использовалось для подбора модели, удовлетворяющей всем спектрам сразу [16].

Моделирование экспериментальных спектров проводилось с помощью программы SIMNRA [17]. Расчет энергетических потерь иона при движении в веществе производился пакетом SRIM-2013.

На рис. 2 представлена высокоэнергетичная часть спектра РОР, полученная при рассеянии ионов He⁺⁺ с энергией 3094 кэВ. Вертикальные линии

Рис. 2. Высокоэнергетичная часть спектра РОР. Точками обозначен эксперимент, линиями – моделирование

показывают положение пиков элементов на поверхности образца. При рассеянии ионов удалось полностью разрешить сигнал от рутения и практически полностью разрешить сигналы от второго и третьего (считая от поверхности) слоя тантала, которые частично накладываются друг на друга. Первый слой тантала сливается с сигналом от иридия. Положение сигнала кобальта совпадает с положением сигнала меди. Пики железа и никеля смешиваются друг с другом и накладываются на марганец и медь с кобальтом.

В спектрах, полученных при рассеянии ионов He⁺ с энергией 1237 кэВ и 1856 кэВ, большинство пиков соседних элементов накладываются друг на друга, но удалось выделить уровень сигнала от кобальта (\sim 920 кэВ) и положение экстремума сигнала от иридия (\sim 1070 кэВ), хотя полностью эти элементы разрешить не удается.

Существенным недостатком этого набора спектров является отсутствие каких-либо данных о легких элементах в образце: В, N, O, Mg. На рис. 3, *а* представлена низкоэнергетичная часть спектра POP, полученная при рассеянии ионов He⁺ с энергией 1237 кэВ. Единственные элементы, которые различимы, — это O и Si подложки (Si/SiO₂). Использование ионов He⁺⁺ с энергией 3052 кэВ позволило оценить содержание O в слое MgO с помощью резонансного (не резерфордовского) рассеяния, сечение которого более чем в 20 раз превышает резерфордовское сечение рассеяния [18, 19]. На рис. 3, δ отчетливо видны два пика O, соответствующие его содержанию в SiO₂ и MgO.

С помощью программы SIMNRA была построена модель анализируемого образца. В качестве исходной принималась структура, соответствующая описанию технологического процесса. Изменением толщины и состава слоев удалось построить модельную мишень. Спектры, рассчитанные по ней, наилучшим образом удовлетворяли экспериментальным данным. В табл. 1 представлены состав и толщины слоев пленки. Здесь в столбце 1 указан номер слоя от поверхности; в 2 – химический состав слоя, заявленный производителем; в 3 – элементы, содержащиеся в слое; в 4 и 5 – содержание элементов в слое, а в 6 – толщина слоев по результатам моделирования.

Ошибка определения содержания рутения не превышает $\pm 3.1\%$, т.е. при этом в слое № 6 содержится от 8.7% до 13.5% всего рутения. Содержание кислорода в слое № 4 определено с точностью не хуже $\pm 8.9\%$. Содержание магния в этом слое неизвестно и принималось равным содержанию кислорода. Количество Та в слоях № 10 и № 12 определено с ошибкой, не превышающей $\pm 5.1\%$.

Оценка погрешности в определении содержания остальных элементов в образце затруднительна. При подборе модели изменение содержания одного элемента может компенсироваться изменением содержания другого (особую свободу действий дает тут содержание «невидимых» легких элементов – В, N, Mg). При моделировании образца стехиометрия слоев № 3 и № 5 считалась соответствующей заявленной производителем, а толщины этих слоев одинаковыми.

Содержание кобальта и железа фактически определялось суммарно сразу для слоев № 3, № 5 и № 7 ввиду их близкого расположения. Далее принималось, что слои № 3 и № 5 соответствуют предложенной стехиометрии, а остаток помещался в слой № 7. Диссипативная способность слоя № 11 определялась

Рис. 3. Низкоэнергетичные части спектров РОР. Пояснения см. на рис. 2

по расстоянию между пиками тантала (слои № 10 и № 12) с достаточно высокой точностью.

Из данных табл. 1 видно, что химический состав слоев модельного образца заметно отличается от заявленного, начиная со слоя № 7. Отметим низкое содержание N в слое CuN. По данным рентгеноструктурного анализа, выполненного в [7], в слое № 11 присутствует стехиометрический Cu₃N. По результатам РОР анализа можно заключить, что состав слоя № 11 представляет смесь чистой Cu и соединения Cu₃N. Различия состава в многокомпонентных слоях могут быть связаны с их подгонкой модели к экспериментальным спектрам.

№ слоя	Слой	Состав			Толицио	
		Элемент	Концентрация, ат %	Концентрация, 10 ¹⁵ ат/см ²	10 ¹⁵ ат/см ²	
1	7Ru	Ru	100	51.479	51.479	
2	10Ta	Та	100	51.512	51.512	
3	2.5Co _{0.6} Fe _{0.2} B _{0.2}	Со	60	10.5	17.5	
		Fe	20	3.5		
		В	20	3.5		
4	2MgO	Mg	50	10.1	20.2	
		0	50	10.1		
		Со	60	10.5		
5	$2.5 \text{Co}_{0.6} \text{Fe}_{0.2} \text{B}_{0.2}$	Fe	20	3.5	17.5	
		В	20	3.5		
6	0.9Ru	Ru	100	5.904	5.904	
7	2.0Co _{0.7} Fe _{0.3}	Со	63.1557	15.343	24.204	
		Fe	36.8443	8.951	24.294	
8	16Ir _{0.18} Mn _{0.82}	Ir	24.3649	26.632	109.305	
		Mn	75.6351	82.673		
9	3NiFe	Ni	62.6456	20.435	32.620	
		Fe	37.3544	12.185		
10	5Ta	Та	100	26.555	26.555	
11	30CuN	Cu	87.1679	230.471	264.399	
		N	12.8321	33.928		
12	5Ta	Та	100	26.552	26.552	

Таблица 1. Модель тонкопленочной структуры, по данным технологического процесса и результатам анализа

На рис. 4 представлены экспериментальные высокоэнергетичные части спектров POP и распределения элементов в пленке модельного образца соответственно, которые в сумме дают смоделированные спектры. Можно отметить следующие особенности. Для ряда элементов, составляющих пленку, которые достаточно хорошо разрешены (Та) или содержатся в одном слое (Cu, Ir, Ni, Mn), их распределения являются симметричными. Симметричность распределений нарушается для элементов, которые находятся в нескольких слоях. Например, наблюдается плечо в левой части распределения Ru, а соответствующая кривая для Fe имеет два экстремума (см. рис. 4). Из легких элементов в действительности удается оценить только содержание O и N. В целом построенная модель образца хорошо описывает экспериментальные спектры POP, полученные при различных условиях анализа.

Если считать толщины слоев, указанных производителем, верными, то можно определить плотность каждого слоя модели. И наоборот, взяв

Рис. 4. Экспериментальный спектр РОР (точки) и распределения элементов, полученные в результате моделирования с помощью программы SIMNRA

справочные значения плотностей веществ, слагающих слои, можно определить их толщины. Результаты таких расчетов приведены в табл. 2.

В столбце 1 указан номер слоя; в 2 – химический состав слоя с указанием его толщины по данным технологического процесса осаждения пленки; в 3 – атомная плотность слоя по результатам моделирования экспериментальных данных; в 4 – массовая плотность слоя, определенная из полученных данных атомной плотности и толщин слоев, указанных в столбце 2; в 5 – имеющиеся табличные данные по массовой плотности веществ; в 6 – толщины слоев, полученные по результатам моделирования экспериментальных спектров (столбец 3) и табличным данным по массовой плотности веществ.

№ слоя	Слой	Атомная плот- ность, 10 ²² ат/см ³	Плотность (рас- четная), г/см ³	Плотность (таб- личная), г/см ³	Толщина слоя, нм
1	7Ru	7.354	12.3428	12.41	6.96
2	10Ta	5.151	15.4781	16.65	9.30
3	$2.5 Co_{0.6} Fe_{0.2} B_{0.2}$	7.0	5.6599	—	—
4	2MgO	10.1	3.38	3.58	1.89
5	$2.5 Co_{0.6} Fe_{0.2} B_{0.2}$	7.0	5.6599	_	_
6	0.9Ru	6.560	11.0100	12.41	0.80
7	$2.0 Co_{0.7} Fe_{0.3}$	12.147	11.6579	_	_
8	16Ir _{0.18} Mn _{0.82}	6.832	10.0260	_	_
9	3NiFe	10.873	10.4056	_	_
10	5Ta	5.311	15.9583	16.65	4.79
11	30CuN	8.813	8.3699	_	_
12	5Ta	5.310	15.9565	16.65	4.79

Таблица 2. Оценка плотностей и толщин слоев

По результатам анализа можно отметить, что отличия плотности/толщины, полученные для одноэлементных слоев в результате измерений методом POP, не превышают погрешности измерений.

1.2. Анализ многослойных пленок субмикронного масштаба

В последнее время ведутся работы по использованию композитных пленок на основе аморфного кремния с добавлением других материалов – как альтернатива углеродным — в качестве электродов в литий-ионных аккумуляторах. Как правило, такие пленки имеют слоистую структуру, в которой слои с повышенным содержанием Si чередуются со слоями с Si, содержащими другие элементы, в частности О и Al. В работе [20] приведены результаты изучения физико-химических свойств Si-O-Al слоистых пленок, полученных магнетронным распылением Si и Al мишеней в атмосфере Ar с незначительным содержанием О₂, и их связи с электрохимическими характеристиками при использовании таких структур в качестве отрицательного электрода. Установлено, что емкость полученных Si-O-Al композитных структур близка к теоретическому значению 3240 мА · ч/г и она практически не изменяется при 100 циклах перезарядки. Исследование морфологии пленок после циклических испытаний показало, что происходит увеличение шероховатости поверхности и появление на ней трещин, а также значительное увеличение толщины пленок за счет образования пор. Кроме того, состав пленок обогашается элементами твердого электролита. Эти факторы велут к снижению электроемкости электрода. По мнению авторов работы, протекание указанных процессов может во многом определяться послойным распределением элементов исходной пленки, их концентрационным соотношением и плотностью слоев. В представленном исследовании разработаны методики количественного послойного анализа тонкопленочных композитных слоистых структур Si-O-Al с различным содержанием элементов в слоях с привлечением методов сканирующей электронной микроскопии, ВИМС и РОР.

Осаждение пленок проводилось магнетронным распылением двух мишеней (Si и Al) на установке Оратория 22. Плазмообразующий газ – Ar. Процесс напыления состоял из четырех циклов. В каждом цикле – длительностью 10 мин – в течение первых двух минут распыления мишеней на катоды с Si и Al подавались мощности 340 и 315 Вт соответственно. Затем мощность, подаваемая на Al, уменьшалась в 3 раза, и в рабочую камеру осуществлялся напуск кислорода. Базовое давление составляло 10⁻⁴ Па, а при напылении – 1.1 Па. В результате были получены пленки толщиной 860 нм с повышенным содержанием Al в нечетных от подложки слоях. На рис. 5 представлена микрофотография поперечного скола образца, полученная на сканирующем электронном микроскопе SUPRA 40. Светлые полосы соответствуют слоям с повышенным содержанием Al. Толщина слоев варьируется от 50 до 150 нм.

Послойный анализ методом ВИМС проводился на времяпролетном масс-спектрометре TOF.SIMS⁵. В качестве анализирующего использовался пучок ионов Bi_3^+ с энергией 25 кэВ, плотностью тока 4 × 10⁻⁵ мA/см², а распыляющего при послойном анализе – пучок ионов 2 кэВ Cs⁺ с плотностью

Рис. 5. Микроскопическое изображение поперечного скола слоистого образца Si-O-Al

тока 2.2×10^{-1} мА/см². Распыляющий пучок разворачивался в растр на поверхности образца размером 200×200 мкм². Сканирование зондирующего пучка осуществлялось в центральной области кратера ионного травления размером 50×50 мкм².

При регистрации вторичных положительных ионов реализована идеология катионного ВИМС анализа [21], которая заключается в следующем. После выхода распыления об-

разца на стационарный режим поверхность обогащается имплантированным цезием, который при дальнейшем распылении покидает приповерхностный слой в виде ионов Cs^+ , Cs_2^+ . Вблизи поверхности (~ 2 Å) эти ионы образуют квазимолекулярные ионы MCs^+ , MCs_2^+ с распыленными нейтральными атомами мишени М. Анализ таких вторичных ионов позволяет в значительной мере избежать матричных эффектов. В данной работе регистрировались ионы Cs_2^+ , $SiCs_2^+$, $AlCs_2^+$, OCs_2^+ с масс-спектральным разрешением $M/\Delta M = 5800$ в районе 294 а.е.м. (²⁸ Si ¹³³ Cs₂⁺).

После нормировки ионных токов, характеризующих распределение основных элементов в пленке Si-O-Al, на интенсивность тока ионов Cs₂⁺ концентрационные профили строились таким образом: $n_{Si} = K_{Si} \times I_{Si}$; $n_{Al} = K_{Al} \times I_{Al}$; $n_{O} = K_{O} \times I_{O}$, где I_{Si} , I_{Al} , I_{O} – соответствующие нормированные ионные токи. Калибровочная константа K_{Si} определялась плотностью атомов кремния $n_{Si0} = 5 \times 10^{22}$ см⁻³, соответствующей кремниевой подложке: $K_{Si} = n_{Si0}/I_{Si0}$, где I_{Si0} – значение I_{Si} в подложке. Величина K_{Al} определялась значением плотности атомов алюминия $n_{Al0} = 6.02 \times 10^{22}$ см⁻³ и значением I_{Al0} , которое определялось отдельным измерением, произведенным для образца чистого алюминия в идентичных условиях. Калибровочную константу K_{O} для кислорода находили, используя значение 5.33 $\times 10^{22}$ см⁻³ в максимуме концентрации кислорода на профиле, предположительно соответствующего слою естественного окисла кремния на границе пленка/подложка, которая перед осаждением пленки специально не очищалась. Хотя это заведомо некорректное предположение, поскольку содержание кислорода в этой области может быть увеличено за счет диффузии и ионно-индуцированной диффузии при анализе не связанного в пленке кислорода.

Анализ методом POP проводился на установке K2MV. Спектры POP регистрировались с использованием ионов He⁺ с энергией E = 1.8 МэВ. В силу неоднозначности интерпретации спектров POP, полученных на такой сложной многослойной структуре, были сняты две серии спектров. Одна в зависимости от ориентации образца (использовались углы падения ионного пучка $\alpha = 5^{\circ}$, 10°, 11.2° и при угле рассеяния $\varphi = 160^{\circ}$) и вторая в зависимости от угла рассеяния зондирующих ионов (углы рассеяния $\varphi = 165^{\circ}$, 160°, 150° и углы выхода $\beta = 25^{\circ}$, 30° и 30.4° при угле падения $\alpha = 11.2^{\circ}$). Обработка спектров POP модельных мишеней производилась программой SIMNRA v7.01 [17]. Значения энергетических

потерь ионов He⁺ при движении в образце рассчитывались программой SRIM-2013.

На рис. 6 представлен типичный послойный профиль распределения элементов пленки. Показаны изменения токов вторичных ионов Cs_2^+ , $SiCs_2^+$, $AlCs_2^+$ и OCs_2^+ от времени распыления. Помимо основных элементов в пленке обнаружено незначительное присутствие углерода. После окончания анализа глубина кратеров травления измерялась на профилометре Talystep, и она оказалась около 860 нм, что совпадает с данными СЭМ.

Рис. 6. Зависимость тока вторичных ионов от времени распыления поверхности: $Cs_2^+(I)$, $SiCs_2^+(2)$, $AlCs_2^+(3)$, $OCs_2^+(4)$

Видно, что имеется по четыре максимума на кривых распределения Al и O, которые чередуются друг с другом, что соответствует технологическому процессу напыления пленки. В то же время исчез максимум концентрации Si вблизи границы пленка–подложка. Кроме того, наблюдается тенденция роста концентрации Si и Al от подложки к поверхности, в то время как для O увеличение сигнала происходит в обратном направлении.

По методике, описанной в предыдущем разделе, были построены профили распределения плотностей элементов Si, Al и O в пленке, которые представлены на рис. 7. При этом предполагалось, что скорости распыления в слоях изменяются незначительно и шкала времени переводилась в шкалу глубин. Как отмечалось выше, формирование квазимолекулярных ионов происходит вблизи поверхности объединением нейтральных распыленных атомов мишени с ионами перераспыленного Cs. Катионный ВИМС, как метод анализа поверх-

ности, близок к вторично-нейтральной масс-спектрометрии (ВНМС), в которой распыленные нейтральные частицы ионизируются в вакууме электронным или лазерным пучком [22, 23]. Метод ВНМС позволяет делать количественные оценки состава поверхности, поскольку процесс распыления, в отличие от вторичной ионной эмиссии, практически не зависит от химического состояния приповерхностного слоя (матричных эффектов), и отношение концентраций элементов пропорционально отношению токов постионизованных частиц [24]. Поэтому можно считать, что полученные профили распреде-

Рис. 7. Зависимости распределения атомной плотности пленки Si-O-Al и ее основных элементов от глубины, полученные по данным ВИМС анализа

Рис. 8. Экспериментальный спектр РОР (точки, $\phi = 160^{\circ}$, $\alpha = 5^{\circ}$, $\beta = 25^{\circ}$) и спектр, рассчитанный с помощью SIMNRA, с поверхности модельного образца, построенного по концентрационным профилям на основе данных ВИМС (сплошная линия)

ления элементов пленки близки к реальным значениям.

Наблюдаемые изменения максимумов и среднего содержания компонентов по глубине могут быть обусловлены рядом факторов: нестабильностью параметров установки при напылении пленки (мощность разряда, давление плазмообразуюшего газа, расход кислорода), диффузией элементов при осаждении и по окончании процесса. Из данных рис. 5 видно, что структура пленки имеет столбчатый характер, содержит поры, т.е. имеет большое количество дефектов. Но нельзя исключать и то обстоятельство, что ВИМС является разрушающим методом анализа поверхности. Взаимодействие ионного пучка Cs⁺ приводит к перемешива-

нию атомов в области проективного пробега ионов (~10 нм в Si), ионно-индуцированной диффузии. С учетом различного содержания Si, O и Al в слоях пленки можно ожидать внесение погрешностей в полученные результаты по измерению концентрационных профилей, вызванных ионной бомбардировкой при распылении образца.

На рис. 8 представлен один из спектров POP анализа (отмечен точками). Вертикальные пунктирные линии показывают расчетные положения сигналов от элементов, расположенных на поверхности образца. Видно, что спектр отражает четырехслойную структуру пленки. С помощью инструментов SIMNRA возможно подобрать такую модель пленки, при которой спектр POP, рассчитанный по ней, дает хорошее согласие с экспериментом. Однако решение для многослойной структуры, содержащей близкие по массе элементы и элементы легче подложки, имеет неоднозначный характер. Можно получить множество соотношений концентраций элементов, которые неплохо описывают один экспериментальный спектр, но плохо – другие, полученные при разных экспериментальных условиях анализа.

При построении начальной мишени для расчета модельного спектра РОР в данной работе использовались профили атомной плотности элементов, полученные по результатам анализа ВИМС. Для создания мишени производился перевод шкалы глубин из нанометров в единицы поверхностной плотности: дифференциальным перемножением глубины на плотность на этой глубине. Абсолютное значение атомной плотности переводилось в относительную концентрацию элементов, и полученные зависимости разбивались на 70 равных по толщине слоев, в пределах которых концентрации считались постоянными. Эти значения вносились в качестве исходных в программу по обработке спектров SIMNRA. Рассчитанный по данной мишени спектр РОР приводится на рис. 8 (сплошная линия) в сравнении с экспериментальными данными.

В модельном спектре наблюдается сильное сглаживание экстремумов, а также завышение пиков спектра в области 1000 и 300 кэВ, что свидетельствует о переизбытке тяжелых элементов (Al и Si) в приповерхностной области модельной мишени и переизбытке кислорода ближе к подложке. Это может быть обусловлено артефактами анализа ВИМС. По этой причине было произведено уточнение параметров модельной мишени (толщина слоев, относительные концентрации элементов в них) при помощи внутренних инструментов SIMNRA. Результат такого уточнения представлен на рис. 9 (сравнение производится с тем же экспериментальным спектром РОР). Такое же хорошее согласие уточненная модельная мишень дает и для других полученных в работе спектров РОР.

На рис. 10 приводится сравнение уточненной при помоши SIMNRA модели с результатами анализа ВИМС. В верхней части рисунка представлены профили плотностей элементов пленки по данным ВИМС, а в нижней – эти же профили, рассчитанные по результатам обработки спектров РОР. Из характерных отличий можно отметить: наличие на уточненной мишени всех четырех пиков кремния, в то время как на результате ВИМС пик у подложки отсутствует. Примерно одинаковый уровень максимумов кислорода, тогда как по результатам ВИМС их уровень возрастает от поверхности к подложке. Отсутствие огромного пика кислорода непосредственно на границе с подложкой; более высокие и резко очерченные пики алюминия. Результаты анализа РОР, полученные с учетом данных ВИМС, в большей степени соответствуют технологическим режимам напыления пленок.

Рис. 9. Экспериментальный (точки) и рассчитанный (сплошная линия) спектры по уточненной с помощью SIMNRA модели образца

Рис. 10. Концентрационные профили элементов образца по данным ВИМС (вверху) и рассчитанные с помощью SIMNRA по уточненной модели (внизу)

Рис. 11. Профили плотности пленки по глубине по данным ВИМС (точки) и РОР (сплошная линия)

Наряду с послойным распределением концентраций элементов в образце определено среднее значение плотности образца. Суммарное содержание кислорода в уточненной мишени составляет $1.054 \cdot 10^{18}$ ат/см², алюминия — $8.47 \cdot 10^{17}$ ат/см², кремния — $2.932 \cdot 10^{18}$ ат/см², что при толщине образца 860 нм дает атомную плотность $5.624 \cdot 10^{22}$ ат/см³ и массовую плотность 2.359 г/см³. Для сравнения: средние значения, рассчитанные по профилям ВИМС (см. рис. 7), атомная плотность $5.862 \cdot 10^{22}$ ат/см³.

Обратный перевод из единиц поверхностной плотности в нанометры затруднен по той причине, что

требуется восстановить сразу две неизвестные функции – атомную плотность в каждой точке и собственно координаты каждой точки. Задача имеет множество решений, так как определены только координата последней точки (толщина образца) и среднее значение атомной плотности, а границы между слоями можно перемещать произвольно (при сохранении интеграла под графиком). Но можно сделать это преобразование, используя некоторые приближения. Если посчитать, что профиль плотности в модельной мишени подобен профилю плотности, полученному ВИМС анализом, то получается картина, изображенная на рис. 11. Здесь толщина каждого слоя определялась на основании предположения, что атомная плотность в этом слое равна средней плотности профиля ВИМС на том же участке, помноженной на отношение интегральных плотностей $n_{\text{РОР}}/n_{\text{ВИМС}}$.

Заключение

В работе предложены методики комплексного количественного послойного анализа многослойных пленочных структур с различным содержанием элементов в слоях. Толщина слоев может изменяться от единиц до десятков нанометров.

Для измерения химического состава пленок использовались методы вторично-ионной масс-спектрометрии и резерфордовского обратного рассеяния. Эти методы являются взаимодополняющими друг друга. Использование методики катионного ВИМС позволяет получать практически количественные данные о соотношении компонентов в слоях пленки, по крайней мере близких к поверхности, при послойном анализе образца. Но возможное перемешивание, ионно-индуцированная диффузия и другие эффекты, вызванные ионной бомбардировкой при распылении поверхности, могут искажать реальное распределение элементов по глубине, особенно в случае анализа слоев нанометровой толщины и субмикронных по глубине структур. В этом случае результаты ВИМС анализа не совсем точно соответствуют технологическим параметрам осаждения пленок.

Однозначная интерпретация спектров POP, полученных от многослойных структур, содержащих близкие по массе и легкие элементы, с помощью программы SIMNRA требует исходных достоверных данных либо по химическому соотношению элементов в слоях, либо по их толщине. В первом случае можно воспользоваться результатами количественного ВИМС анализа или данными технологических параметров осаждения структуры. Во втором — также можно использовать заявленные параметры производителей или результаты электронной микроскопии.

В работе показано, что использование данных катионного ВИМС анализа по распределению элементов по глубине четырехслойной пленки Si-O-Al с различным содержанием Al в слоях в качестве исходных позволяет построить модель структуры, которая однозначно описывала все спектры POP, измеренные при различных экспериментальных условиях. Результатом совместного использования взаимодополняющих методов ВИМС и POP для послойного анализа Si-O-Al пленок стало построение количественных профилей распределения плотностей элементов и пленки в целом по глубине. Определена средняя плотность пленки, значения которой близки как по данным ВИМС, так и по результатам POP.

Анализ магниторезистивной структуры с толщиной слоев нанометрового масштаба оказался затруднен для ВИМС. Однако использование данных технологического процесса напыления пленки и отдельные лишь из-за плохого контраста результаты исследования структуры с помощью просвечивающей растровой электронной микроскопии позволило получить информацию о составе, толщинах и плотностях слоев с помощью РОР. Этот факт дает возможность заявить о том, что метод РОР может использованиея в качестве входного контроля такого рода структур перед использованием их в последующих технологических операциях.

Работа выполнена в рамках Государственного задания ЯФ ФТИАН им. К.А. Валиева Минобрнауки России.

ЛИТЕРАТУРА

- 1. Werner H.W., Garden P.R.H. A comparative study of methods for thin-film and surface analysis // Rep. Prog. Phys. 1984. Vol. 47. P. 221–344.
- Hofman S. Sputter depth profile analysis of interface // Rep. Prog. Phys. 1998. Vol. 61. P. 827–888.
- 3. Oswald S., Baunack S. Comparison of depth profiling techniques using ion sputtering from the practical point of view // Thin Solid Films. 2003. Vol. 425. P. 9–19.
- 4. *Escobar Galindo R., Gago R., Lousa A., Albella J. M.* Comparative depth-profiling analysis of nanometer-metal multilayer by ion-probing techniques // Trend. Anal. Chem. 2009. Vol. 28. P. 494–505.
- Escobar Galindo R., Gago R., Duday D., Palacio C. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES // Anal. Bioanal. Chem. 2010. Vol. 396. P. 2725–2740.
- Drozdov M.N., Drozdov Yu.N., Novikov A.V., Yunin P.A., Yurasov D.V. A new limitation of the depth resolution in TOF-SIMS elemental profiling: the influence of a probing ion beam // Techn. Phys. Lett. 2018. Vol. 44. N 4. P. 320–323.

- 7. *Trushin O. S., Simakin S.G., Vasiliev S.V., Smirnov E.A.* Quality control of a multilayer spin-tunnel structure with the use of a combination of analytical methods // Russian Microelectronics. 2018. Vol. 47. P. 381–387.
- Pan F., Yang T., Liu B.X. Fe/Pd nano-multilayers prepared vapour deposition, and their magnetic anomaly // J. Condens. Matter. 1993. Vol. 5. L507–L514.
- 9. Kolomiyetsev V.N., Kononenko I.N., Kravchenko S.N., Zakharets M.I. et al. Determination of a thickness of layers of multilayers periodic coatings by a method of Rutherford backscattering // Metallofiz. Noveihie Technol. 2016. Vol. 38. P. 815–823 (in Russian).
- Barradas N.P., Soares J.C., Silva M.F., Paszti F., Szilagyi E. Study of multilayer substrate surface roughness using RBS with improved depth resolution // NIMB. 1994. Vol. 94. P. 266–270.
- Mikhailov S., Savan A., Pfluger E., Knoblauch L. et al. Morphology and tribological properties of metal (oxide) – MoS₂ nanostructured multilayer coatings // Surf. Coating Techn. 1998. Vol. 105. P. 175–183.
- 12. Aouadi S.M., Schultze D.M., Rohde S.L., Wong K.C., Mitchell K.A.R. Growth an characterization of Cr₂N/CrN multilayer coatings // 2001. Vol. 140. P. 267–277.
- Lee J.H., Jeong H.D., Yoon C.S., Kim C.K. Interdiffusion in antiferromagnetic/ferromagnetic exchange coupled NiFe/IrMn/CoFe multilayer // J. Appl. Phys. 2002. Vol. 91. P. 1431–1435.
- Fuller L., Colligon J.S., Williams J.S. The application of correlated SIMS and RBS techniques to the measurement of ion implanted range profiles // Surf. Sci. 1976. Vol. 54. P. 647–658.
- Grandin H.M., Tadayyon S.M., Lennard W.N. et al. RBS and SIMS investigation of Mg : Ag – tris aluminium interfaces // Organic Electronics. 2003. Vol. 4. P. 9–14.
- Reis M.A., Chaves P.C., Corregitor V., Barradas N.P. et al. Detection angle resolved PIXE and equivalent depth concept for thin film characterization // X-ray Spectrom. 2005. Vol. 34. P. 372–375.
- 17. *Mayer M.* SIMNRA User's Guide. Max-Planck-Institut für Plasmaphysik, Garching, Germany. 2011. P. 1–220.
- Leavitt J.A., McIntyre L.C. Non-Rutherford 4He cross section for ion beam analysis // NIMB. 1991. Vol. 56/57. P. 734–739.
- Knapp J.A., Barbour J.C., Doyle B.L. Ion beam analysis for depth profiling // J. Vac. Sci. Technol. A. 1992. Vol. 10. P. 2685–2690.
- 20. Kulova T.L., Mironenko A.A., Skundin A.M. et al. Study of silicon composite for negative electrode of lithium-ion battery // Int. J. Electrochem. Sci. 2016. Vol. 11. P. 1370–1381.
- 21. Saha B., Chakraborty P. MCs_n^+ -SIMS: an innovative approach for direct compositional analysis of materials without standards // Energy Procedia. 2013. Vol. 41. P. 80–109.
- Lipinsky D., Jede R., Benninghoven A. et al. Performance of a new optics for quasisimultaneous secondary ion, secondary neutral and residual gas mass spectrometry // J. Vac. Sci. Technol. 1985. Vol. A3. P. 2007–2017.
- Scichi H., Osabe S., Sugaya M. et al. A resonant photoionisation sputtered neutral mass spectrometry instrument for submicron microarea analysis of ULSI devices // Appl. Surf. Sci. 2003. Vol. 203–204. P. 228–234.
- Бачурин В.И., Гаврилов Э.Л., Никитин А.М. Установка для исследования распыленных частиц методом масс-спектрометрии // Матер. 11 Межд. конф. ВИП. Москва, 1993. Т. 1. С. 153–155.